Wednesday, 18 October 2017

Elastischer Gleitender Durchschnitt


Elastic Volume Weighted Moving Average Der Elastic Volume Weighted Moving Average ist ein Trendindikator, der das durchschnittliche Volumen in seiner gleitenden Durchschnittsberechnung verwendet. Der Benutzer kann die Eingabe (schließen), den Multiplikator und die Periodenlänge ändern. Dieser Indikator8217s Definition ist weiter in den kondensierten Code in der folgenden Berechnung angegeben. Wie man mit dem elastischen Volumen handelt Gewichteter gleitender Durchschnitt Das EVWMA kann in Verbindung mit anderen Indikatoren als Tendenzindikator benutzt werden. Es werden keine Handelssignale berechnet. So greifen Sie in MotiveWave zu Zum Anfang gehen Sie zu Study gtVolume BasedgtElastic Volume Weighted MA oder gehen Sie in das obere Menü, wählen Sie Add Study. Starten Sie die Eingabe in diesem Studiennamen, bis Sie sehen, es erscheint in der Liste, klicken Sie auf den Namen der Studie, klicken Sie auf OK. Wichtiger Haftungsausschluss: Die Informationen auf dieser Seite dienen ausschließlich Informationszwecken und sind nicht als Beratung oder Aufforderung zum Kauf oder Verkauf von Wertpapieren auszulegen. Bitte lesen Sie unsere Erklärung zur Risikoprüfung und Leistungsverzicht. Berechnungsmethode Gleitender Durchschnitt (ma) Benutzerdefiniert, Standardwert ist SMA-Eingangspreis (Benutzerdefiniert, Standardwert ist Schlusskurs) Multuserweiterung, Voreinstellung 20 Periodenbenutzereingabe, Voreinstellung 40 Index Aktuelle Balkenanzahl, avVol Durchschnittsvolumen prevE beforeEVWMAIn Fertigungs - und Geschäftsprozesse , Gibt es ein gemeinsames Werkzeug namens Control-Diagramm. Erstellt im Jahr 1920 von Dr. Walter Shewhart, wird ein Kontroll-Diagramm verwendet, um festzustellen, ob ein Prozess in der Kontrolle oder außer Kontrolle ist. Damals arbeitete Dr. Shewhart bei Bell Labs, um die Signalqualität von Telefonleitungen zu verbessern. Schlecht bearbeitete Komponenten waren eine der Hauptursachen für eine Signalverschlechterung, so dass die Verbesserung der Herstellungsverfahren zur Herstellung gleichmßiger Komponenten ein kritischer Schritt zur Verbesserung der Signalqualität war. Dr. Shewhart erkannte, dass alle Prozesse, Herstellung oder sonst, haben einige Menge an natürlicher Variation. Der Schlüssel war zu identifizieren, wenn die Variation war normal verhalten (in der Kontrolle), und wenn es plötzlich begann zu ändern (außer Kontrolle). Ein Prozeß, der außer Kontrolle gegangen ist, muß angehalten werden, damit das Problem behoben werden kann, anstatt aus schlampig hergestellten Komponenten herauszuwühlen. Steuerkarten funktionieren, indem sie einen Alarm auslösen, wenn der Wert von dem Mittel um einen bestimmten Betrag ausreichend abweicht. In der Praxis sind sie sehr einfach und intuitiv zu lesen und wirken oft aufgrund ihrer Einfachheit und Robustheit als Frontalanomaliedetektoren. Glättung mit Moving Averages Control Charts können ziemlich leicht in Elasticsearch mit einer Kombination von Aggregationen, einschließlich der neuen Pipeline-Aggregationen gebaut werden. Um loszulegen, schauen Sie sich einige synthetische Daten, die ich für diesen Beitrag generiert. Zum Spaß können wir uns vorstellen, dass es eine Kühlmitteltemperatur (in Celsius) für einen Kernreaktor ist. Werfen wir einen Blick auf die Daten zunächst mit einem Histogramm-Eimer und ein extendedstats Metrik: In der Grafik, sind wir Plotten der avg für jeden Eimer: Klicken Sie für volle Größe. Wie Sie sehen können, sind die Daten im Grunde eine flache Trend, mit einer zufälligen Verteilung um 30. Die Daten sind laut, so dass die erste Sache, die Sie tun möchten, glatt ist, so dass Sie die allgemeine Tendenz besser sehen können. Gleitende Durchschnitte sind für dieses groß. Ein gleitender Durchschnitt nimmt grundsätzlich ein Fenster von Werten, berechnet den Durchschnitt und verschiebt das Fenster einen Schritt nach vorn. Es gibt verschiedene Arten von gleitenden Durchschnitten, die Sie wählen können. Wir werden einen exponentiell gewichteten Moving Average (EWMA) verwenden. Diese Art von gleitendem Durchschnitt reduziert die Bedeutung eines Datenpunkts exponentiell, da er im Fenster älter wird. Dies hilft, den gleitenden Durchschnitt auf die Daten zu zentrieren, anstatt zurückzuhalten. In der folgenden Abfrage addieren wir eine Movavgmean-gleitende durchschnittliche Pipelineaggregation, die den gleitenden Durchschnitt jedes Buckets berechnet (dh ein gleitendes Mittel der Mittel): Es gibt einige interessante Bits hier: bucketspath zeigt auf den in unserem extendedstats-Metrik berechneten avg-Wert Fenster ist auf 24 gesetzt, was bedeutet, dass wir die letzten 24 Stunden zusammen modellieren möchten, wird auf ewma gesetzt und schließlich konfigurieren wir einige Einstellungen für dieses spezielle Modell. Die Einstellung alpha steuert, wie glatt der generierte gleitende Durchschnitt ist. Die Voreinstellung (0,3) ist in der Regel ziemlich gut, aber ich mochte das Aussehen von 0,1 besser für diese Demo. Schauen Sie sich die Docs für weitere Informationen, wie alpha-Funktionen. Und das resultierende Diagramm enthält nun eine gut geglättete Linie (lila): In der Steuerung Also, die Frage ist. Gibt es einen Grund, sollten Sie den Reaktor herunterfahren, oder ist alles reibungslos funktionieren Ich gebe zu, ich war hinterhältig in der vorherigen Grafik: Ich zeichnete den Durchschnitt. Wie zuvor diskutiert. Der Durchschnitt ist eine ziemlich schlechte Metrik in den meisten Fällen. In diesem Datensatz ist es versteckt eine große Spitze, die ich am Donnerstag platziert. Wenn wir den maximalen Wert in jedem Eimer (gelbe Linie) zeichnen, ist die Spitze sofort klar: Ich hoffe, dass Sie den Reaktor weg am Donnerstag gedreht haben) Wie konnten wir dieses spike entdeckt haben In dieser Tabelle ist die Anomalie absurd klar. Sie könnten eine einfache Schwelle verwenden. Aber auch später sehen Schwellen oft unter komplexeren Mustern aus. Stattdessen können wir ein Kontrollschema erstellen. Steuerkarten sehen einen Prozess außer Kontrolle, wenn Datenpunkte beginnen, drei Standardabweichungen weg vom Mittelwert zu fallen. In diesem Sinne können wir unsere Aggregation zu ändern, um es zu einem bona fide Steuerkarte. Dazu müssen wir zwei neue Aggregationen hinzufügen: einen gleitenden Durchschnitt auf der Standardabweichung und ein Skript, das die obere Grenze berechnet: Die neue movavgstd Pipeline agg ist sehr einfach: Es ist einfach eine EWMA (mit Standardeinstellungen), die durchschnittlich ist Die stats. stddeviation metric über die letzten 24 Stunden. Die Shewhartucl Pipeline Agg ist ein Bucketscript, das die obere Steuergrenze aka berechnet, der Zeitpunkt, wenn Sie anfangen Sorgen, weil der Prozess außer Kontrolle geraten ist. Denken Sie es als eine dynamische Schwelle. Der Schwellenwert wird durch Multiplizieren der rollenden Standardabweichung mit drei berechnet und dann dem Rollmittelwert addiert. Ich habe es zur Kürze weggelassen, aber die meisten Steuerkarten enthalten auch eine untere Steuergrenze. Um das hinzuzufügen, würden Sie einfach kopieren shewhartucl. Subtrahieren Sie statt des Hinzufügens drei Standardabweichungen und benennen Sie sie in shewhartlcl um. Hinweis: Im mit einem Inline-Skript für die Bequemlichkeit. Sie können es für ein statisches Skript ersetzen, wenn dynamisch, Inline-Skripting auf Ihrem Cluster deaktiviert ist. Geglättetes Mittel: violett Maximalwert: gelb Obere Kontrollgrenze: grün Wir können dies graphisch darstellen und sehen, dass die Spitze (gelb) über die Kontrollgrenze hinausschießt (grün). In einem realen System ist dies, wenn Sie eine Benachrichtigung oder E-Mail senden. Oder vielleicht etwas drastischer, denn das ist ein Kernreaktor, den wir modellieren.) Schlussfolgerung Das ist alles für diese Woche. Wir haben die neuen Pipeline-Aggregationen verwendet, um unsere Daten mit einem gleitenden Durchschnitt zu glätten. Wir haben dann ein Kontrolldiagramm aufgebaut, um dynamisch Ausreißer zu finden, indem wir eine obere Kontrollgrenze basierend auf dem gleitenden Durchschnitt und einer sich bewegenden Standardabweichung berechnen. In Teil zwei. Wie das gleiche Kontrollschema für weitere interessante Datenmuster verwendet werden kann, wie lineare Trends und zyklisches Verhalten. Nun auch sehen, wie man es mit Watcher integrieren, so dass wir E-Mail-Benachrichtigungen automatisch empfangen können. Check it out Diese Funktionalität ist experimentell und kann in einer zukünftigen Version geändert oder entfernt werden. Elastic wird ein Best-Effort-Ansatz, um alle Probleme zu beheben, aber experimentelle Features sind nicht abhängig von der Unterstützung SLA offizielle GA-Funktionen. Bei einer geordneten Datenreihe gleitet die Aggregation Moving Average ein Fenster über die Daten und gibt den Mittelwert dieses Fensters ab. Zum Beispiel können wir mit den Daten 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 einen einfachen gleitenden Durchschnitt mit einer Fenstergröße von 5 wie folgt berechnen: Bewegungsdurchschnitte sind eine einfache Methode, um sequentiell zu glätten Daten. Bewegungsdurchschnitte werden typischerweise auf zeitbasierte Daten, wie z. B. Aktienkurse oder Server-Metriken, angewendet. Die Glättung kann verwendet werden, um hochfrequente Fluktuationen oder zufälliges Rauschen zu eliminieren, was es ermöglicht, die Trends niedrigerer Frequenz leichter visualisierbar zu machen, wie z. B. Saisonalität. Syntaxedit Linearedit Das lineare Modell weist den Punkten in der Reihe eine lineare Gewichtung zu, so dass ältere Datenpunkte (z. B. die am Anfang des Fensters) einen linear geringeren Betrag zum Gesamtdurchschnitt beitragen. Die lineare Gewichtung hilft, die Verzögerung hinter den Daten zu verringern, da ältere Punkte weniger Einfluss haben. Ein lineares Modell hat keine speziellen Einstellungen zu konfigurieren Wie das einfache Modell, Fenstergröße kann das Verhalten des gleitenden Durchschnitt ändern. Beispielsweise wird ein kleines Fenster (Fenster: 10) die Daten genau verfolgen und nur kleine Schwankungen verkleinern: Abbildung 3. Linearer gleitender Durchschnitt mit Fenster der Größe 10 Im Gegensatz dazu ist ein linear bewegender Durchschnitt mit größerem Fenster (Fenster 100) Wird alle Hochfrequenz-Schwankungen glätten, so dass nur niederfrequente, langfristige Trends. Es neigt auch dazu, sich hinter den tatsächlichen Daten um einen beträchtlichen Betrag zu verkürzen, obwohl typischerweise weniger als das einfache Modell: Abbildung 4. Linearer gleitender Durchschnitt mit Fenster der Größe 100 Multiplikativ Holt-Wintersedit Multiplicative wird durch die Einstellung type angegeben: mult. Diese Sorte wird bevorzugt, wenn der saisonale Einfluss mit Ihren Daten multipliziert wird. Z. B. Wenn die saisonale Affekt ist x5 die Daten, anstatt einfach zu ergänzen. Die Standardwerte für alpha und gamma sind 0,3, während beta 0,1 ist. Die Einstellungen akzeptieren alle Float von 0-1 inklusive. Der Standardwert für die Periode ist 1. Das multiplikative Holt-Winters-Modell kann durch multiplikative Holt-Winters-Arbeiten minimiert werden, indem jeder Datenpunkt durch den saisonalen Wert geteilt wird. Dies ist problematisch, wenn irgendeine Ihrer Daten Null ist, oder wenn es Lücken in den Daten gibt (da dies zu einer Division durch Null führt). Um dies zu bekämpfen, pads die Mult Holt-Winters alle Werte um eine sehr kleine Menge (110 -10), so dass alle Werte ungleich Null sind. Dies beeinflusst das Ergebnis, aber nur minimal. Wenn Ihre Daten ungleich Null sind oder Sie es vorziehen, NaN zu sehen, wenn Nullen auftreten, können Sie dieses Verhalten mit pad deaktivieren: false Predictionedit Alle gleitenden Durchschnittsmodelle unterstützen einen Vorhersagemodus, der versucht, in die Zukunft zu extrapolieren angesichts der aktuellen Geglättet, gleitender Durchschnitt. Je nach Modell und Parameter können diese Vorhersagen zutreffend sein oder auch nicht. Vorhersagen werden durch Hinzufügen eines Vorhersageparameters zu einer gleitenden durchschnittlichen Aggregation aktiviert, wobei die Anzahl der Vorhersagen angegeben wird, die an das Ende der Reihe angehängt werden sollen. Diese Prognosen werden im gleichen Intervall wie Ihre Eimer beabstandet: Die einfache. Lineare und ewma-Modelle produzieren flache Vorhersagen: Sie konvergieren im Wesentlichen auf dem Mittelwert des letzten Wertes in der Serie und erzeugen eine Ebene: Abbildung 11. Einfacher gleitender Durchschnitt mit Fenster der Größe 10, prognostizieren 50 Im Gegensatz dazu kann das Holt-Modell basiert basieren Auf lokale oder globale konstante Trends. Wenn wir einen hohen Beta-Wert setzen, können wir basierend auf lokalen Konstanten Trends (in diesem Fall die Prognosen Kopf nach unten, da die Daten am Ende der Serie wurde in Richtung nach unten Richtung) zu extrapolieren: Abbildung 12. Holt-Linear gleitenden Durchschnitt Mit Fenster der Größe 100, vorherzusagen 20, alpha 0.5, beta 0.8 Im Gegensatz dazu, wenn wir eine kleine Beta wählen. Die Prognosen basieren auf dem globalen konstanten Trend. In dieser Reihe ist die globale Tendenz leicht positiv, so dass die Vorhersage einen scharfen U-Turn und beginnt eine positive Steigung: Abbildung 13: Double Exponential gleitenden Durchschnitt mit Fenster der Größe 100, vorherzusagen 20, alpha 0,5, beta 0,1 Das Holtwinders Modell Hat das Potenzial, die besten Prognosen zu liefern, da es auch saisonale Schwankungen in das Modell einbezieht: Abbildung 14. Holt-Winters gleitender Durchschnitt mit Fenster der Größe 120, vorherzusagen 25, alpha 0,8, beta 0,2, gamma 0,7, Zeitraum 30

No comments:

Post a Comment